Spark SQL 查询中 Coalesce 和 Repartition 暗示(Hint)
coalesce 或 repartition 来修改程序的并行度:
val data = sc.newAPIHadoopFile(xxx).coalesce(2).map(xxxx)或val data = sc.newAPIHadoopFile(xxx).repartition(2).map(xxxx)val df = spark.read.json("/user/iteblog/json").repartition(4).map(xxxx)val df = spark.read.json("/user/iteblog/json").coalesce(4).map(xxxx) |
通过 coalesce 或 repartition 函数我们一方面可以减少 Task 数据从未达到减少作业输出文件的数量;同时我们也可以加大并行度从而提高程序的运行效率。
如果想及时了解Spark、Hadoop或者HBase相关的文章,欢迎关注微信公众号:iteblog_hadoop
我们现在越来越多的人使用 Spark SQL 来编写程序,可是在 Spark 2.4 之前,我们是不能直接在 SQL 里面使用 coalesce 或 repartition的。值得高兴的是,国内的开发者为 Spark SQL 开发了一个功能,使得我们在 Spark SQL 里面也能用这两个函数,详见 SPARK-24940。这个功能在 Spark 2.4 已经发布了,这样我们可以通过 COALESCE 或 REPARTITION 关键字暗示来设置程序的并行度。使用如下:
package com.iteblogimport java.util.UUIDimport org.apache.spark.sql.SparkSessionobject Iteblog { case class Person(name: String, age: Int) def main(args: Array[String]) { val spark = SparkSession .builder() .appName("iteblog example") .master("local[2]") .enableHiveSupport() .getOrCreate() // For implicit conversions like converting RDDs to DataFrames import spark.implicits._ val person = 1.to(10000).map { i => Person(UUID.randomUUID().toString.substring(1, 6), i % 100) } val df = spark.sparkContext.parallelize(person,2).toDF() df.createOrReplaceTempView("person") spark.sql("create table iteblog0 as select age,count(*) from person where age between 10 and 20 group by age").explain() }} |
上面程序的物理计划如下:
== Physical Plan ==Execute CreateHiveTableAsSelectCommand CreateHiveTableAsSelectCommand [Database:default}, TableName: iteblog0, InsertIntoHiveTable]+- *(2) HashAggregate(keys=[age#4], functions=[count(1)]) +- Exchange hashpartitioning(age#4, 200) +- *(1) HashAggregate(keys=[age#4], functions=[partial_count(1)]) +- *(1) Project [age#4] +- *(1) Filter ((age#4 >= 10) && (age#4 <= 20)) +- *(1) SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, assertnotnull(input[0, qwe.App$Person, true]).name, true, false) AS name#3, assertnotnull(input[0, qwe.App$Person, true]).age AS age#4] +- Scan[obj#2] |
如果我们加上 REPARTITION 关键字暗示,如下:
spark.sql("create table iteblog1 as select /*+ REPARTITION(4) */ age,count(*) from person where age between 10 and 20 group by age").explain() |
则物理计划变成下面的
== Physical Plan ==Execute CreateHiveTableAsSelectCommand CreateHiveTableAsSelectCommand [Database:default}, TableName: iteblog1, InsertIntoHiveTable]+- Exchange RoundRobinPartitioning(4) +- *(2) HashAggregate(keys=[age#4], functions=[count(1)]) +- Exchange hashpartitioning(age#4, 200) +- *(1) HashAggregate(keys=[age#4], functions=[partial_count(1)]) +- *(1) Project [age#4] +- *(1) Filter ((age#4 >= 10) && (age#4 <= 20)) +- *(1) SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, assertnotnull(input[0, qwe.App$Person, true]).name, true, false) AS name#3, assertnotnull(input[0, qwe.App$Person, true]).age AS age#4] +- Scan[obj#2] |
可以看到第四行多了 +- Exchange RoundRobinPartitioning(4),其他的不变。通过指定 coalesce 或 repartition 暗示,我们就可以在 Spark SQL 里面指定并行度。
注意,如果你使用 Spark 2.4 以下版本,在 Spark SQL 里面加入 /*+ REPARTITION(4) */ 暗示,语句也不会运行错误,只不过并不会修改如何并行度相关属性而已。
