一、MapReduce2工作机制
1.1、MapReduce2的架构图
MapReduce2工作机制.png
1.2、MapReduce2运作步骤
说在前头的话,上图中有一个ResoureceManager,这是一个资源调度器,说白了就是管资源的,在MapReduce1时,所有的事情都是交给Jobtracker来做,包括资源调度,在MapRedu……继续阅读 »
一、YARN的诞生
在hadoop1.0版本是没有yarn的概念的,而在hadoop2.0版本以上才出现了yarn,人们是希望有一套合理的管理机制,来控制整个集群的资源管理,可以搭配多种计算框架比如MapReduce,spark等等,于是才出现了yarn。
二、YARN的基本架构
yarn和hdfs一样也是一个主从架构(master、slave),分为
R……继续阅读 »
最近我们生产环境的kafka集群有增加节点的需求,然而kafka在新增节点后并不会像elasticsearch那样感知到新节点加入后自动将数据reblance到新集群中,因此这个过程需要我们手动分配。一番折腾之后,实现了增加kafka集群节点并将原有数据均匀分配到扩容后的集群。下面结合一个例子谈一下整个过程。
……继续阅读 »
1、消息队列选型
2、Kafka在360商业化的现状
3、Kafka client框架
4、数据高可用
5、负载均衡
6、鉴授权与ACL方案
7、Quota机制
8、跨IDC的数据同步
9、监控告警
10、线上问题及解决方案
……继续阅读 »
本文由趣头条实时平台负责人席建刚分享趣头条实时平台的建设,整理者叶里君。文章将从平台的架构、Flink 现状,Flink 应用以及未来计划四部分分享。
……继续阅读 »
对一个互联网产品来说,典型的风控场景包括:注册风控、登陆风控、交易风控、活动风控等,而风控的最佳效果是防患于未然,所以事前事中和事后三种实现方案中,又以事前预警和事中控制最好。
……继续阅读 »
随着人工智能时代的降临,数据量的爆发,在典型的大数据业务场景下数据业务最通用的做法是:选用批处理的技术处理全量数据,采用流式计算处理实时增量数据。2017年基于Flink开发的实时计算产品正式服务于阿里巴巴集团内部,并从搜索和推荐两大场景开始应用。目前阿里巴巴及下属所有子公司,都采用实时计算产品来处理所有的实时业务。本文介绍Ververica Platfor……继续阅读 »
有状态的计算作为容错以及数据一致性的保证,是当今实时计算必不可少的特性之一,流行的实时计算引擎包括 Google Dataflow、Flink、Spark (Structure) Streaming、Kafka Streams 都分别提供对内置 State 的支持。State 的引入使得实时应用可以不依赖外部数据库来存储元数据及中间数据,部分情况下甚至可以直……继续阅读 »
今年的8月22日 Apache Flink 发布了1.9.0 版本(下文简称1.9),在 Flink 1.9 中,Table 模块迎来了核心架构的升级,引入了阿里巴巴Blink团队贡献的诸多功能,本文对Table 模块的架构进行梳理并介绍如何使用 Blink Planner。
……继续阅读 »
flink的MemorySegment是Flink管理的内存片段。该类是一个抽象类。它的实现既可以是堆内存,也可以是堆外内存,甚至是两者同时使用。使用MemorySegment这个类型管理内存,无需知道内存片段是堆内、堆外还是混合,一视同仁。
……继续阅读 »